Manz, L.A., Hopkins, D.G., and Ulmer, M.G., 2010, The National Geochemical Survey – a summary of North Dakota datasets: North Dakota Geological Survey Geologic Investigations, no. 114, 226 p. This report is a comprehensive summary of field and analytical data for more than 1,700 soil samples that were collected throughout North Dakota as part of the National Geochemical Survey component of the U.S. Geological Survey’s Mineral Resources Program. Data are presented in tabular form and also as a set of maps depicting the statewide spatial distribution of 34 major, minor, and trace elements. The text includes descriptions of sampling and analytical procedures, and a short discussion. GI 114 is only available on CD ($5.00).

Anderson, F.J., and Gudmunsen, C.B., 2010, Field Screening for Shallow Gas in Foster County, North Dakota: North Dakota Geological Survey Geologic Investigation, no. 118. GI-118 is a 1:150,000 scale map that presents and briefly describes the results of recently completed shallow gas field screening of shallow ground-water wells in Foster County, North Dakota. The results from 69 tested wells are displayed, overlain on a shaded-relief base map. A brief discussion, along with a graphical display of the results, is included. Price: $10.00 paper or $5.00 for pdf on CD.

Anderson, F.J. and Gudmunsen, C.B., 2010, Field Screening for Shallow Gas in Ramsey County, North Dakota, North Dakota Geological Survey Geologic Investigation, no. 120.

Nordeng, S.H., 2010, First 60 - 90 Day Average Production Per Well in the Bakken & Three Forks Formations in North Dakota, North Dakota Geological Survey Geologic Investigation, no. 123. This is a map of North Dakota showing the location of wells producing from the Bakken Pool. The average daily rate of oil production for the first 60 days of service is shown by the color and size of circles centered on the location of the well.
Anderson, F.J., and Bubach, B.J., 2010, Field Screening for Shallow Gas in Dickey County, North Dakota: North Dakota Geological Survey Geologic Investigation, no. 126. GI-126 is a 1:150,000 scale map that presents and briefly describes the results of recently completed shallow gas field screening of shallow ground-water wells in Dickey County, North Dakota. The results from 257 tested wells are displayed, overlain on a shaded-relief base map. A brief discussion, along with a graphical display of the results, is included. Price: $10.00 paper or $5.00 for pdf on CD.

Nordeng, S.H. and Nesheim, T.O., 2010, Resource Potential of the Tyler Formation: North Dakota Geological Survey North Dakota Geological Survey Geologic Investigations, no. 127. This poster presents a Time-Temperature Index map of the Tyler Formation as well examples of formation pressure determinations from drill stem tests (DSTs) and two sets of RockEval data. The data suggest that the Tyler Formation may possess several features associated with basin-centered petroleum accumulations.

Anderson, F.J., Gudmunsen, C.B., Hall, B.N., Ries, A.J., Christensen, A.R., and Bubach, B.J., 2010, Locations of FID Shallow Gas Occurrences in North Dakota: Geological Survey Geologic Investigation, no. 128. GI-128 is a 1:500,000 scale well location summary map showing the locations and results of all wells field tested for the presence of shallow natural gas from 2006 to 2010. The results from over 9,300 tested wells are shown. GI-128 is available in traditional paper map format or on CD. Price: $10.00 for paper map format and $5.00 on CD.

Geology Maps

Geothermal Maps

Landslide Maps ($5.00 paper, $5.00 pdf on CD, $25 shape file on CD)

Murphy, E.C., 2010, Areas of landslides Croff, ND Quadrangle: North Dakota Geological Survey 24k Map Series, no. Crff-l. A total of 235 landslides were mapped in the Croff Quadrangle covering an area of 5,240 acres. The landslides ranged from small isolated slides of less than one acre to large complex slides that covered up to 580 acres. The majority of landslides in this map occur in the badlands topography adjacent to the Little Missouri River and within the drainages of Burnt and Deep creeks. Landslides along this stretch of the Little Missouri River Valley significantly increase in size and number due to the redirection of the Little Missouri River into this area by glaciers approximately 600,000 years ago. The north-flowing ancestral Little Missouri River was forced to the east, near the west edge of the North Unit of the Theodore Roosevelt National Park, and quickly eroded a new channel creating over-steepened slopes that were very susceptible to slope failure. Many of these landslides are hundreds, if not thousands, of years old.

Murphy, E.C., 2010, Areas of landslides Figure 4 Ranch, ND Quadrangle: North Dakota Geological Survey 24k Map Series, no. Fg4R-l.
Hyaenodon to some degree still are, very susceptible to slope failure. Many of these landslides are hundreds, if not thousands, of years old.