The investigation of shallow natural gas occurrences within existing ground-water wells in Burke County, North Dakota was conducted over a three day period from August 2 – 4, 2009. A total of 94 well sites, consisting of historic and existing observation and stock wells, were selected to be visited in the field in order to (1) determine the actual existence of the well, (2) verify its location, and (3) perform flame-ionization detector (FID) field screening for possible shallow natural gas occurrences. 19 observation well sites locations were visited to have a ground-water observation well at their prescribed point and were subsequently field screened. 46 wells were not found at their prescribed location and were presumed abandoned or destroyed. Only one well (160-94-T93W5) was not visited due to access and/or time constraints.

Each of the wells were field screened for the presence of combustible gases using a portable FID-calibrated to methane (0.0 ppm low-scale or 10,000 ppm high-scale) in air. The FID was used solely for field screening on all wells. Instrument response was collected at the top of well casing (TOC) and just above the ground-water/air interface (GWI). After field screening a water level reading within the well was collected using an electric well tape. Of the 19 existing wells field screened, five returned positive FID responses ranging from 0.0 to 31,347 ppm as methane (Figure 1); 14 of the wells showed no response (i.e., a 0 ppm methane instrument reading) during field screening at both the TOC and GWI. One well (160-94-T93W5) was found to have detectable concentrations of methane (51.1 ppm) emanating from the TOC. It has been observed in the field that it is more likely to detect methane at the GWI or higher up in the art column within a given well. It has been less typical to actually detect methane emanating from the TOC. The occurrence of FID responses are controlled primarily by the distribution of wells within the county, individual private, irrigation, or municipal water supply wells, were not considered as a part of this investigation.

FID field screening is not a stand-alone analytical tool. It must be used in conjunction with additional analytical methods and procedures. A positive FID instrument response indicates that the presence of methane is highly likely at the well since the instrument is selectively sensitive to methane and is calibrated specifically to a preferential concentration of methane in air. However, excessive moisture and low oxygen levels or high values of carbon dioxide can influence FID response. A confirmatory gas analysis is required to determine and quantify the absolute presence and concentration of methane and other hydrocarbons that may be present in conjunction with FID screening results. The recommenced level screening results presented here are intended to aid in the selection of future candidate observation well locations and to assist in conducting additional sampling and analysis and potentially focus future field investigative and exploration efforts.

Figure 1. Graph depicting the relative relationship and absolute maximum values of flame-ionization detector (FID) instrument responses from selected wells in Burke County. FID results for each well are presented in order of field screening occurrence from top to bottom. Values shown are values of flame-ionization detector (FID) instrument responses from (TOC/GWI) and just above the ground-water/air interface (GWI).

Explanation

Geologic Symbols

- Existing observation well with a positive numerical FID instrument response in parts per million (ppm) as methane, at the top of casing (TOC) and/or the ground-water/air interface (GWI). Values shown are
- Existing observation well with a positive numerical FID instrument response in parts per million (ppm) as methane, at the top of casing (TOC) and/or the ground-water/air interface (GWI). Values shown are
- Historical observation well location. No existing well at well site location visited. Well presumed abandoned or destroyed.
- Wells sites not visited during this investigation.
- Nested wells; locations not separable at this scale.

Indicates number of wells drilled at some coordinates.

Other Features

- US Highway
- State Highway
- Paved Road
- Unpaved Road
- Water
- Water - Intermittent
- Marsh
- River/Stream - Potential
- Stream - Intermittent

Fred J. Anderson and Allison R. Christensen

2010