Methane Occurrence in Glacial Buried-Valley Aquifer Systems in North Dakota

(www.nd.gov/gis)

Fred J. Anderson, Geologist North Dakota Geological Survey

Geological Investigations No. 87

Surficial Aquifers in North Dakota

Areas of Historical Shallow Natural Gas Occurrence

Modified from Hard, 1920

Investigation Overview

- Reconnaissance style well field screening program for shallow natural gas (CH₄) occurrence.
- Focused on observation and livestock supply wells.
- Utilizing portable flameionization detector (FID) instrumentation.
- Measuring FID response as CH_4 in air at the well.

NDGS summer undergraduate (NDSU) field technician Mr. Brian Hall field screening a shallow ground-water observation well south of Fargo, N.D. in Cass County.

PhotoVac® MicroFID

- CH₄ in the well most often detected at or above the GWI.
- •Less commonly detected at the TOC.
- •Wells screened in buriedvalley aquifers containing detrital lignites overlying Cretaceous shale bedrock.

FID Instrument response collected at the well TOC and GWI.

Number of Wells Field Screened to Date

North Dakota Shallow Gas FID Field Screening Summary*								
Number of Wells Investigated Summary								
Year	Counties Covered	Wells Investigated	Wells Field Screened	% Field Screened	Wells with a positive FID response (>0.0)	% Positive FID response (>0.0)	Wells with no FID response (0.0)	
2009	25	4,413	1,635	37%	389	24%	1,246	
2008	3	539	209	39%	23	11%	186	
2007	8	1282	859	67%	177	21%	682	
2006	7	1066	658	62%	126	19%	532	
Total	43	7,300	3,361	46%	715	21%	2,646	

- → Wells Investigated
- ----- Wells Field Screened
- Wells with a positive
 FID response (>0.0)

Surficial Aquifers in North Dakota

Areal Distribution of Methane Occurrences in Aquifers

Types of Glacial Buried-Valley Aquifers

Generalized/Conceptual Geohydrologic Section

(Modified after Armstrong, 1979)

Lower Spiritwood Aquifer System in Southeastern North Dakota

County	Wells Tested	CH ₄ Occurrences*	CH ₄ High (ppm)	CH ₄ Low (ppm)	CH ₄ Mean (ppm)
Griggs	94	18	2,063	0.3	183
Barnes	28	5	2,897	0.3	1,092
Stutsman	107	17	182	0.4	29
LaMoure	195	41	3,712	0.4	151
Totals/Means	424	81	2,213	0.35	364

* CH₄ Occurrences found within the lower Spiritwood Aquifer.

CH₄Occurrence in the Lower Spiritwood Aquifer

Four zones of relatively higher CH₄ concentration appear in four separate regions of the aquifer system

Detected CH₄ Distribution Lower Spiritwood Aquifer

Depth of Screened Interval vs. [CH₄]

Seperation of Screened Interval from Pierre Shale Bedrock Surface vs. [CH₄]

Total Well Depth vs. [CH₄]

[SO₄] in GW vs. [CH₄]

[HCO₃] in GW vs. [CH₄]

Ţ

[Total Fe] in GW vs. [CH₄]

Ground-Water Methanogenic Indicator Summary

Constituent	Methanogenic Range ¹	Mean	Std. Dev.	Range	Min	Max	n
FID [CH ₄] (ppm)		186	66	2,897	0.3	2,897	81
[SO ₄] (mg/L)	< 500	218	168	1,068	12	1,080	76
[HCO ₃] (mg/L)	400 - 1000	463	78	416	289	705	76
[Fe] Total (mg/L)	?	0.62	0.76	4.05	0.01	4.06	76

¹Shurr, 2006

Buried Valley Aquifer as a "Petroleum System" (Late-Generation Biogenic Gas)

Possible Sourcing - I: Bedrock Shale Source

Buried Valley Aquifer as a "Petroleum System" (Late-Generation Biogenic Gas)

Possible Sourcing - II: Aquifer as Source & Reservoir

Buried Valley Aquifer as a "Petroleum System" (Late-Generation Biogenic Gas)

Possible Sourcing - III: Bedrock & Aquifer

Potential CH₄ Sourcing – Lower Spiritwood Aquifer System

FID Instrument Response Classes [ppm as CH₄]

Characteristics of Glacial Buried-Valley Aquifers in North Dakota (Lower-Spiritwood Aquifer System)

- Relatively shallow, commonly 0'~300' in depth (91m).
- Aquifer sediments dominantly coarse sands and gravels.
- Vary from unconfined (shallow to surface) to confined (deeper with clay aquitard) conditions within the aquifer system.
- Deeper portions of the aquifer are commonly in unconformable contact with underlying Cretaceous shale bedrock of the Pierre and/or Niobrara Formations (shale-calcareous shale).
- Detrital lignites most common in the upper portions, but not ubiquitous. throughout the aquifer (based on descriptions in lithologic logs).
- Favorable methanogenic geochemical conditions are present.
- Portions of the aquifer have reservoir-style lithologic architecture (i.e. trap, reservoir, and source).
- CH_4 occurrence appears more abundant in the lower portions of the aquifer but tends towards higher concentrations in the shallower depths of the aquifer.
- CH_4 generation could be related to both the presence of detrital lignites in the aquifer or from carbonaceous shales in contact with the aquifer.
- Detected [CH₄] is generally less than 100 ppm.

- CH₄ occurs in glacial buried-valley aquifers in North Dakota and is being generated from the presence of a detrital lignite substrate in a Type II BVA, *and* from a shallow carbonaceous bedrock source-with an influence from the presence of detrital lignites, in a Type I BVA.
- 2. [SO4] and [HCO3] ground-water geochemistry associated with detected methane concentrations in the Lower Spiritwood Aquifer System are within the ranges shown to be favorable for methanogenesis.

Questions for Future Research

- Is CH₄ being generated within the aquifer or is it being trapped within the aquifer, having migrated from a deeper source, or both?
- 2) What is the timing of CH₄ generation and distribution of CH₄ within the aquifer/reservoir?
- 3) Can CH₄ production be sustained for beneficial use with produced groundwaters?
- 4) Could this system be anthropogenically stimulated (microbially) and maintained in order to produce economic quantities of CH₄?

Acknowledgements

- Elroy Kadrmas (GIS) – N.D. Geological Survey
- Ed Murphy State Geologist – N.D. Geological Survey
- Bob Shaver, Steve Pusc, Chris Bader – N.D. State Water Commission
- Brian Hall
 - North Dakota State University

NORTH DAKOTA GEOLOGICAL SURVEY

North Dakota Department of Mineral Resources and Geological Survey Division Main Offices

North Dakota Geological Survey Paleontology Lab

http://www.dmr.nd.gov/ndgs

Street Address: 1016 E. Calgary Ave., Bismarck ND 58503 Mailing Address: 600 East Boulevard Avenue, Bismarck ND 58505-0840 Telephone: (701) 328-8000 FAX: (701) 328-8010

The Wilson M. Laird Core & Sample Library

Street Address: 612 East Boulevard Avenue, Bismarck, ND 58505-0830 Mailing Address: 600 East Boulevard Avenue, Bismarck ND 58505-0840 Telephone: (701) 328-8000 FAX: (701) 328-8010

Email Contact: fjanderson@nd.gov