Catalog of North Dakota Radiocarbon Dates

By
Lorraine A. Manz

MISCELLANEOUS SERIES 92
NORTH DAKOTA GEOLOGICAL SURVEY
Edward C. Murphy, State Geologist
Lynn D. Helms, Director Dept. of Mineral Resources
2014 (updated March 2016)
Contents

INTRODUCTION... 1
Introduction to the Second Edition
Introduction to the First Edition

EXPLANATION OF DATA FIELDS.. 3

RADIOCARBON LABORATORY IDENTIFICATION CODES USED IN
THIS REPORT.. 5

SITE MAP... 7

HYPERLINKS TO RADIOCARBON DATA TABLES... 8
Table 1: Archaeologic dates
Table 2: Geologic dates
Table 3: Invalid dates

REFERENCES... 9
Introduction to the Second Edition

Radiocarbon dating practices and technology have changed a great deal since the first edition of the Catalog of North Dakota Radiocarbon Dates was published in 1973. One of the most important of these was the introduction and subsequent ratification by the international radiocarbon community of standard reporting procedures in the late 1970s (Stuiver and Polach, 1977). The development of accelerator mass spectrometry (AMS) was another: its high sensitivity and small sample size requirements have enabled the range of radiocarbon dating applications to expand well beyond its “traditional” fields of geology and archaeology (Linick and others, 1989). Improvements in conventional radiocarbon dating methods have likewise enhanced precision and accuracy, particularly of calibration data.

This revised and updated edition of the catalog contains more than 350 radiocarbon dates for North Dakota, of which approximately 250 are new additions. The dates are separated into three categories: archaeological, geologic, and invalid, which are presented on a trio of annotated Excel spreadsheets, accompanied by an explanatory text and a site map. Readers are encouraged to inspect the entries and inform the author of any errors, omissions, or new radiocarbon dates for inclusion in future updates. No attempt has been made to arrange the new geologic dates by association at this time.

The spreadsheets have some extra data fields for information that, for various legitimate reasons, was not reported in the first edition. Two of these (δ^{13}C and calibrated age) are in deference to the reporting conventions referred to earlier. (See explanatory text for definitions.) One data field not carried over from the old catalog is Stratigraphy. For many years after its launch in 1958, the main purpose of the journal Radiocarbon was to publish compilations of radiocarbon age measurements made by the world’s laboratories and was the principal source of reference for such data. As Moran and his colleagues pointed out, however, these reports, like many others published at the time, were generally lacking vital stratigraphic detail. To avoid duplication of effort, additional stratigraphic information, if available, was therefore included in the catalog. Today, the number of radiocarbon dates has grown so large that few laboratories continue the practice of publishing lists and so finding relevant data requires a much broader search of the scientific literature. Most of the post-1973 references cited in this edition of the catalog are consequently to original works, all of which are available electronically and/or via interlibrary loan, often free of charge. Such convenient access to published research rules out the need to incorporate stratigraphic information in this edition of the catalog. To do otherwise would be difficult without appreciably complicating the presentation of the rest of the radiocarbon data.

Introduction to the First Edition

This catalog is a compilation of the approximately 90 radiocarbon dates from North Dakota that are known to us. For convenience of use, the compilation has been arranged in two parts. Part I is a complete list of the geologic dates with all available information on them. Most of the archaeological dates are not included in this list because of their limited geologic significance and because we could add no information not contained in [the journal] Radiocarbon. Part II consists of a) geologic dates arranged by geological association, b) archaeological dates, and c) dates that are meaningless because of contamination or misidentification of materials dated.
There are three principal reasons for our making this compilation. The first is to spare those working on
the Quaternary of this area the necessity of compiling individual lists, with attendant duplication of effort.
Second, there is seldom enough stratigraphic information given in the journal Radiocarbon or other
reports of radiocarbon dates to permit persons unfamiliar with the dates to evaluate their interpretations.
We have attempted to give the most complete stratigraphic information possible on each date to assist
others in using the dates for their own work. For some dates, little additional information has been found.
The third purpose for this compilation is to present information that is not available elsewhere about the
validity and significance of the dates. All too seldom has an explicit statement been made in the literature
indicating that a particular date is in error because of contamination.

We have left extra space at the end of each entry so that the user of the catalog can add his own notes and
comments to modify ours or supplement the information given.
Explanation of data fields

Lab ID
The identification code for the dating laboratory and the reference number assigned by it to the sample. See page 5 for a list of the laboratory codes included in this report.

Age (\(^{14}\text{C yr BP}\))
Conventional radiocarbon age (CRA) ± standard error (in \(^{14}\text{C}\) years before present).

CRAs are calculated and reported according to the conventions recommended by Stuiver and Polach (1977) that include the following:

- Use of the Libby half-life of 5,568 years
- The assumption that the atmospheric \(^{14}\text{C}\) level is constant
- The use of oxalic acid or a related secondary standard as the modern radiocarbon standard
- Correction for sample isotopic fractionation by comparison with PDB (see below)
- Ages are expressed in years BP (before present) where 0 BP is defined as AD 1950.

A CRA of less than 200 years may be reported as “modern”. Materials whose measured radiocarbon is indistinguishable from background (exceeds the maximum detection limits of the instrumentation) are reported as “\(> x\)”.

\(\delta^{13}\text{C} (\text{‰})\)
This is the correction factor that accounts for the isotopic fractionation of carbon by natural biochemical processes.

Fractionation refers to the preferential uptake of one isotope over another. Although the three isotopes of carbon (\(^{12}\text{C}, ^{13}\text{C}, \text{ and } ^{14}\text{C}\)) are chemically identical, biological pathways tend to favor the lighter atoms. Accordingly, \(^{12}\text{C}\) is preferred to \(^{13}\text{C}\), which in turn is preferred to \(^{14}\text{C}\). Because the effect is proportional to the differences in their masses, the fractionation of \(^{14}\text{C}\) relative to \(^{12}\text{C}\) is double that of \(^{13}\text{C}\).

The degree of fractionation in a sample is determined by comparing its \(^{13}\text{C}/^{12}\text{C}\) ratio against that of a standard. The result, expressed as a \(\delta^{15}\text{C}\) (deltaC13) value, is given by

\[
\delta^{13}\text{C} = \left(\frac{^{13}\text{C} / ^{12}\text{C}}{^{13}\text{C} / ^{12}\text{C}}_{\text{PDB}} \right) - 1 \times 1000\%
\]

where PDB (or VPDB [Coplen, 1994]) refers to the international PDB standard carbonate – a Cretaceous belemnite (\(\text{Belemnitella Americana}\)) from the Peedee Formation of South Carolina. Because the calcium carbonate from this fossil had an unusually high \(^{13}\text{C}/^{12}\text{C}\) ratio, defined as zero on the \(^{13}\delta\text{C}\) scale, most \(^{13}\text{C}\) values are negative. DeltaC13 values may be sample specific (preferred) or assumed.
By convention, radiocarbon measurements are normalized to $^{13}\delta C = -25\%$ with respect to the international standard (Stuiver and Polach, 1977; Stenström and others, 2011).

A blank cell in this field indicates that the CRA is either uncorrected for isotopic fractionation (applies mainly to older reports) or the $^{13}\delta C$ value was omitted from the published data. It may be necessary to contact the dating laboratory to obtain this information.

Age (cal yr BP) Calibrated radiocarbon age (in ^{14}C years before present). Note: The expression “cal” in the field heading denotes calibrated radiocarbon ages, not calendar ages. Except where noted, age ranges correspond to 2σ statistics (95% probability). Multiple ranges are indicative of “wiggles” in the calibration curve – slight variations in amplitude that cause it to drift outside the statistical range limits defined by the CRA (Bowman, 1990, p. 46 ; Seuss, 1970).

Unlike CRAs, which are invariable, calibrated radiocarbon ages change as the data sets used to construct the calibration curves become more refined. It is important, then, to know which calibration curve was used to convert the CRA into a calibrated age. This information is usually included in the published report.

Lat, Long Location of sample collection site in decimal degrees.

Twp, Range, Sec, QQ PLSS location of sample collection site (Township, Range, and section number).

County County in which the sample collection site is located.

Site name Name and/or description of the sample collection site/landform/locality.

Material dated Dateable materials include most organics, bulk soil or sediment, shells, groundwater, and iron. Charcoal is widely acknowledged as the most reliable material for dating because it is less susceptible to chemical alteration than most other materials and does not require complex pretreatments to remove post-depositional contaminants (Libby, 1955).

Depth Depth below the surface (in meters) at which the sample was collected. Depths originally reported in feet or inches are shown in parentheses. For core samples, depths are measured from the top of the core. Collection depths for lake sediment samples are from either the lake or sediment surface. Additional information is provided on the spreadsheet.

Collector(s) Name(s) of sample collector(s)

Significance Comments by the collector or summarized remarks by the authors of cited publications (see below) on the geologic significance of the date.

Reference Publication(s) in which the radiocarbon data is reported.
Radiocarbon laboratory identification codes used in this report (Radiocarbon, 2014)

A Laboratory of Isotope Geochemistry
 Geosciences Department
 University of Arizona
 Tucson, AZ 85721
 Tel: +1 520 621 1638; Fax: +1 520 621 2672

AA NSF-Arizona AMS Facility
 1118 E. Fourth Street
 P.O. Box 210081
 The University of Arizona
 Tucson, AZ 85721-0081
 Tel: +1 520 621 6810; Fax: +1 520 621 9619
 http://www.physics.arizona.edu/ams/front.htm

Beta Beta Analytic, Inc.
 4985 SW 74 Court
 Miami, FL 33155
 Tel: +1 305 667 5167; Fax: +1 305 663 0964
 http://www.radiocarbon.com/

CAMS Center for Accelerator Mass Spectrometry
 Lawrence Livermore National Laboratory
 P.O. Box 808, L-397
 Livermore, CA 94550
 Tel: +1 510 422 9670; Fax: +1 510 423 7884
 https://cams.llnl.gov/

ETH ETH/AMS Facility
 Institut für Teilchenphysik
 Eidgenössische Technische Hochschule Hönggerberg
 CH-8093 Zürich, Switzerland
 http://www.ams.ethz.ch/

GX Geochron Laboratories
 711 Concord Avenue
 Cambridge, Massachusetts 02138, USA
 Tel: +1 617 876 3691; Fax: +1 617 661 0148
 http://www.geochronlabs.com/

I* Teledyne Isotopes (Formerly Isotopes, Inc.)

L* Lamont-Doherty

M* University of Michigan

SI* Smithsonian Institution
SMUa Southern Methodist University

TAMa Texas A & M University

Txa University of Texas

UGa Center for Applied Isotope Studies
The University of Georgia
120 Riverbend Road
Athens, GA 30602-4702
Tel: +1 706 542 1395; Fax: +1 706 542 6106
http://cais.uga.edu/

Wa USGS, National Center

WHOIb National Ocean Sciences AMS Facility (NOSAMS)
Woods Hole Oceanographic Institution
McLean Laboratory, Mail Stop #8
Woods Hole, MA 02543-1539
Tel: +1 508 289 2554; Fax: +1 508 457 2183
http://www.whoi.edu/nosams/

WISa University of Wisconsin

Ya Yale University

a Laboratory is closed, no longer measuring 14C or operating under a different identification code.

b Listed in \textit{Radiocarbon} as NOSAMS.
Radiocarbon data tables

The radiocarbon data are tabulated on a set of three Excel spreadsheets. Use the links below to access the files.

To view or download Table 1 (archaeologic radiocarbon dates) click here
To view or download Table 2 (geologic radiocarbon dates) click here
To view or download Table 3 (invalid dates) click here
To view or download all three tables click here
References

Hamilton, T.M., 1967, Late-Recent alluvium in western North Dakota, in Clayton, Lee, and Freers, T.F., eds., Glacial geology of the Missouri Coteau and adjacent areas – Friends of the Pleistocene

Kresl, R.J., 1964, Geology of eastern Wells County, North Dakota: Grand Forks, University of North Dakota, M.S. dissertation, 110 p., 2 pls., 22 figs.

Kuehn, D.D., 1995, The geoarchaeology of the Little Missouri Badlands, the late Quaternary stratigraphic and paleo-environmental context of the archaeological record: College Station, Texas A&M University, Ph.D. dissertation, 275 p., 50 figs.

Long, Austin, and Mielke, J.E., 1966, Smithsonian Institution radiocarbon measurements III: Radiocarbon, v. 8, p. 413-422.

_______ 1967, Smithsonian Institution radiocarbon measurements IV: Radiocarbon, v. 9, p. 368-381.

Morrison, J.G., and McFaul, M., 2001, Into the Mud with the Bugs along an Old Trail – Evaluative Testing of Seven Sites and Geoarchaeological Investigations at Seven Locales along Forty Miles

Neuman, R.W., 1961, Excavations of four mound sites in the Oahe Reservoir: Plains Anthropologist, v. 6, no. 12, p. 57-58.

Reiten, Jon, 1983, Quaternary geology of the Knife River Indian Villages National Historic Site: Grand Forks, University of North Dakota, M.S. dissertation, 151 p., 3 pls., 39 figs.

Yu, Zicheng, and Ito, Emi, 1999, Possible solar forcing of century-scale drought frequency in the northern Great Plains: Geology, v. 27, no. 3, p. 263-266.