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The importance of understanding the relationship of basement rocks on basin development and 
the sedimentological/structural history of the Williston Basin has long been recognized. Ballard 
(1963) suggested that a depositional hinge-line for the eastern portion of the Williston Basin was 
coincident with the boundary between two basement provinces (Trans-Hudson and Superior). 
With the aid of geophysics, including seismic, aeromagnetics, and isostatic gravity, later workers 
refined that interpretation to propose a more tectonically complex basement model (Green et al., 
1985).  The relationship between basement anisotropies (Bader, 2018a, 2019a) and the control 
these features may have on Phanerozoic tectonism, sedimentation, and facies architecture in the 
Williston Basin was addressed by Brown and Brown (1979), Clement (1987), Gerhard et al. 
(1987), and Marsh (2017).  These studies showed that basement anisotropy may have significant 
control on Phanerozoic tectonic events, basin development, sedimentation, and ultimately 
hydrocarbon generation and entrapment; an important concept that requires further evaluation in 
North Dakota. 

Precambrian Basement  

The Precambrian basement underlying the Williston Basin can be divided into three geological 
provinces (Green et al., 1985). The Archean Wyoming and Superior Provinces are cratonic 
masses (protocontinents) that were sutured together in the Paleoproterozoic (Green et al., 1985; 
Corrigan et al., 2009; Bader, 2019b). They are separated by back-arc/fore-arc basins and arc 
terranes of the Proterozoic Trans-Hudson Province; the sum of which define a continental scale 
collision zone.   

Cratonic Provinces 

Rocks of the Superior Province underlie most of eastern North Dakota and South Dakota, as well 
as Manitoba, and consist primarily of Archean granite/greenstone and gneissic terranes 
(McCormick, 2010). The Wyoming Craton underlies eastern Montana, western Saskatchewan, 
western South Dakota, and the tip of southwestern North Dakota. It consists of quartz-rich 
gneissic rocks that have been affected by younger granitic intrusions also of Archean age (Sims 
et al., 2004). Baird et al. (1996), proposed the existence of a third, smaller Archean cratonic 
block (Assiniboia/Dakota block) that is present under northwestern North Dakota/northeastern 
Montana and into southern Saskatchewan. It is possible that, with further investigations, similar 
smaller Archean basement blocks will be discovered within the Trans-Hudson orogen. Rocks of 
the Wyoming Province are in contact with rocks of the Paleoproterozoic Trans-Hudson Province 
along the Cedar Creek fault, a major basement-rooted suture/fault located in southeastern 
Montana. A similar suture that defines the eastern boundary of the Trans-Hudson orogen with 
the Superior Province is present just east of Minot and extends approximately 340 km N–S across 
central North Dakota. 

Trans-Hudson Province  

Between the Superior and Wyoming cratons are rocks of the Trans-Hudson orogenic belt. Rocks 
of this zone are relatively complex; having been deposited as oceanic sediments in a rift basin 
during an early Paleoproterozoic rifting event that perhaps separated the once single 
Wyoming/Superior cratonic mass (Bader, 2019b).  Later, the rift basin (Manikewan Ocean) 
closed and collisions accreted Proterozoic island arc complexes and associated sediments to the 
Archean continental margins. Canadian workers have shown that the Trans-Hudson orogen is an 
extremely complicated zone of numerous accreted terranes defined by major basement-rooted 
sutures/faults that strike N–S (White, et al., 2005). 

Basement Anisotropies 

Structural inheritance is significant in other Rocky Mountain basins, such as the Bighorn and 
Powder River Basins of Wyoming and Montana (Bader, 2018a, 2019a). Basement fabrics and 
structural grain are potential zones of weakness that may eventually guide/influence later 
tectonic events. Thus, deposition of overlying sediments, Phanerozoic tectonic events, surface 
geomorphology, development of natural resources (including oil and natural gas, as well as some 
gravel/sand deposits), and location of geothermal highs, all of which are important in North 
Dakota, may be controlled by basement architecture. However, structural inheritance has not 
been well studied in North Dakota, partially due to the significant presence of glacial cover 
across the state, and the lack of any surface exposure of Precambrian rocks. Therefore, this map 
was created to better understand those relationships. 

The Western Dakotas and Central Montana uplifts have had on-going recent attention by 
researchers and industry alike (Gerhard, et al., 1987; Nordeng, et al., 2010; Bader; 2019a, 2019b, 
2020), generally due to increased activity in the Bakken over the last two decades. Numerous 
data-rich studies, incorporating geological, geophysical, structural, and tectonic synopses, have 
recently been completed allowing for development of a more comprehensive and modern 
tectonic model for the area (Sims et al., 2004; McCormick, 2010; Bader, 2018a, 2019a).  

Methods 

This map encompasses areas outside of the Western Dakotas uplift including the easternmost 
portion of the Central Montana uplift and the northernmost limit of the Black Hills arch, all of  

 

which are centrally located within the Great Plains Physiographic Province of the United States. 
It was generated utilizing a variety of methods and a multitude of sources. Typical methods for 
preparing a tectonic map include use of previous published data on major structural features in 
the area (commonly basement-rooted fundamental structures) as a basis for the map. These may 
include major zones or terranes in basement rocks (Sims et al., 2004; White et al., 2005; 
McCormick, 2010; Bader, 2019a, 2019b), generally revealed through seismic, aeromagnetic, 
and/or gravity studies. Major structures mapped at the surface and cutting the sedimentary cover 
may also complement the map (Vuke et al., 1986, 2007). Stratigraphic/depositional studies can 
also be used to reveal lesser, but still significant structures based mainly on thickness and facies 
changes across major deformation zones. Deformation of the sedimentary cover above major 
strike-slip basement-rooted fault zones (Bader, 2019a, 2020) may also be used to identify 
significant tectonic features that might otherwise go unrecognized (i.e., there are no 
facies/thickness changes across the deformed zone). Finally, major surface lineaments can be 
evaluated as to tectonic significance and added to the map (Anderson, 2011). All these methods 
were used in compiling this map; however, the map is not intended to show every lineament, 
fault, or fold in the study area. 

Major basement terranes were “stitched” together utilizing previously published maps (Sims et 
al., 2004; White et al., 2005; McCormick, 2010; Bader, 2019b). Tectonic elements from Montana 
are from Vuke, et al. (1986, 2007) and Sims et al. (2004). Tectonic elements for North Dakota 
were gathered from numerous sources including Lindsay and Kendall (1985), Gerhard et al. 
(1987), Chimney et al. (1992), Kent et al. (2004), Nordeng et al. (2009, 2010), Sonnenberg and 
Pramudito (2009), Anderson (2011), and an unpublished, vintage Canadian Hunter oil/gas fields 
map of the Williston Basin that was also used as a base map. Subsurface anticlinal folds are 
generally from numerous Paleozoic horizons identified on detailed structure contour maps for 
numerous oil and gas fields across eastern Montana and western North Dakota (North Dakota 
Geological Society, 1962; Denson and Gill, 1965; Montana Geological Society, 1985; Nesheim, 
2018). These anticlinal trends were then used to identify potentially significant basement-rooted 
fault zones. 

Observations 

Major tectonic elements of the mapped area exposed at the surface generally include anticlinal 
folds, such as the Miles City arch, Poplar Dome, Cedar Creek, Nesson, Little Knife, Billings 
Nose, and Beaver Creek anticlines. Smaller, subsurface anticlinal traces across the western part 
of North Dakota and eastern Montana define structure on various horizons. These traces are 
commonly en échelon, and left- or right-stepping, thus they may define possible basement-rooted 
wrench-fault zones similar to those seen across the Central Montana uplift. This large region of 
eastern Montana is characterized by fault/fold zones that define buried wrench faults striking 
WNW and NE (Bader, 2019a). Similar, NW- and NE-striking features appear in the Western 
Dakotas uplift to the east of the Cedar Creek fault (Anderson, 2011). The Mondak trend is an 
excellent example of such a feature as it is a classic group of left-stepping en échelon folds that 
likely define a WNW-striking basement-rooted fault in the subsurface. Therefore, along with the 
N-S sutures described above, three general structural trends are noted for the Western Dakotas 
uplift; N-S, NE, and NW. Similar trends have been noted by Bader (2018a, 2019a) across a large 
region from SW Wyoming to NE Montana, where he showed mechanical and temporal evidence 
for structural inheritance in basement rocks related to Precambrian convergence and subsequent 
reactivation during the Laramide orogeny. His work suggests that Precambrian development of 
Laurentia proceeded from SW to NE during several convergent events that took place from the 
Neoarchean (~3.0 Ga) through the Paleoproterozoic (~1.7 Ga), culminating with the terminal 
docking of the Superior craton with Trans-Hudson rocks/sediments as the Manikewan ocean 
closed (Bader, 2019b); thus setting the stage for development of the present-day Western 
Dakotas uplift. This initially resulted in fracturing the northeastern Wyoming craton into 
conjugate shear pairs during WSW convergence early in Trans-Hudson orogenesis (Bader, 2020) 
and these features are now recognized as reactivated Laramide wrench-fault zones across eastern 
Montana (Bader, 2019a). Later in the Trans-Hudson orogeny, numerous suture/subduction zones 
developed as the Manikewan ocean probably opened and closed several times. The collision 
events from ocean basin closures are ultimately defined by the major N-S fault zones (sutures) 
observed in western North Dakota. These zones probably developed originally as very deep 
shear-zones at the brittle-ductile transition within the crust during Precambrian convergent 
events. NW and NE trends were likely created through pure shear during the final E–W docking 
of the Superior craton at the end of the Trans-Hudson orogeny. This docking likely fractured the 
juvenile rocks of the Trans-Hudson orogen forming conjugate shears trending NW-SE and NE-
SW (Anderson, 2011). Finally, these three major directions of Precambrian anisotropy in 
basement rocks were subsequently reactivated during the Phanerozoic when plate tectonic 
stresses were conducive to movement along these earlier-formed zones of weakness, most 
recently during the Sevier/Laramide orogeny. Such Phanerozoic movements on basement rocks 
have created the numerous subtle anticlinal closures in sedimentary cover rocks that commonly 
trap hydrocarbons across the Williston Basin (Nordeng, et al. 2010; Marsh, 2017; Bader, 2018b, 
2018c; Nesheim, 2018). Recognition of these faults zones and associated subsidiary structures 
is critical because, even in horizontally-drilled unconventional reservoirs, many hydrocarbon 
accumulations may still be controlled by structural closure(s) related to wrenching and some of 
these closures may be nearly impossible to detect with conventional mapping techniques (e.g., 
structure contour, seismic, etc.). 
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Williston Domain (Proterozoic)–meta-sedimentary, granite/felsic gneiss (SD)
Glennie Domain (Proterozoic)–quartz diorite to granodiorite orthogneiss (CA); granite/granodiorite (SD)
Tabbernor Fault and Fold Zone (Proterozoic)–volcanic, volcaniclastic, and plutonic rocks of various composition, and gneiss (CA)
Flin Flon Belt (Proterozoic)–granite, greenstone. arc volcanic and plutonic rocks including felsic, intermediate, mafic, and ultramafic intrusions, mafic volcanics, clastic 
sedimentary rocks and metamorphic equivalents (CA); granite and quartzite (SD)
Wyoming Boundary Zone–gneiss and granite (MT); felsic gneiss and granite (SD); schist, granite, quartzite, banded iron formation (SD/BH)
Wyoming Province (Archean)-gneiss and granite (MT)
Superior Boundary Zone–schist, granite, gneiss, diorite, granodiorite, gabbro, and quartzite (SD)
Superior Province (Archean)–greenstone and granite (CA/SD) 
Lineament–arrows indicate inferred direction of lateral movement

Surface Fault–arrows indicate direction of lateral movement

Subsurface Fault–arrows indicate inferred direction of lateral movement

Reverse Fault/Province Boundary–Sawteeth on upper plate

Surface Anticline–showing axial trace and plunge direction

Subsurface Anticline–showing axial trace and plunge direction; drawn from structure contours on various horizons
 Structure contours on top of the Chadron Formation
 Structure contours on top of a Madison Formation horizon (e.g., Midale beds, Green Point marker of Ratcliffe)
 Structure contours on top of the Bakken Formation
 Structure contours on top of a Red River Formation horizon (e.g., base of C-Anhydrite)

Major oil/gas field

BH–Black Hills, CA–Canada, MT–Montana, ND–North Dakota, SD–South Dakota, GFTZ–Great Falls Tectonic Zone
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