Middle Bakken Play Technical Problems and Questions Possible Solutions

Lynn D. Helms NDIC Dept. of Mineral Resources

Julie A. LeFever North Dakota Geological Survey

- A little girl complained to her mom that her stomach hurt really bad.
- Her mom told her that was because it was empty and she had to put something in it to make it stop hurting.
- She had a snack and her stomach ache went away.
- That night her mother's boss and his wife came over for dinner.
- Before they sat down to eat the boss complained that he must be getting sick. His head was killing him.
- The little girl told her mom's boss, "My mom says that's because your head is empty. You have to put something in it to make it quit hurting."

Non-confidential Drilling Results to Date

- Ten (10) wells total
- Single lateral Open hole re-entry (1)
- Re-Entry Open hole Lodgepole liner uncemented (1)
- Dual lateral OH or perforated liners Lodgepole liner uncemented
 (4)
 - Proppant fractured (3), Unstimulated (1)
- Single lateral Perforated liner (4)
- Dual lateral Co-planar Perforated liners (0)

Non-confidential Drilling Results to Date

- Single lateral Open hole re-entry (1)
 - IP 332 BO / 34 BW / 95 MCFD
 - Proppant Fractured almost immediately
 - 87 BO / 146 BW / 150 MCFD
 - Current 43 BO / 10 BW / 89 MCFD
 - 25,000 cumulative BO
 - Breakeven at \$22/BO
 - Problems and Questions
 - 1st ND attempt marginally successful
 - Hole stability in upper shale?
 - Proppant fracture growth into Lodgepole?

Re-Entry – Open hole – Lodgepole liner uncemented

Non-confidential Drilling Results to Date

- Re-Entry Open hole Lodgepole liner uncemented
 - IP 263 BO / 0 BW / 177 MCFD
 - Proppant Fractured after 4 months and 19,000 BO
 - 304 BO / 0 BW / 172 MCFD
 - Current 304 BO / 0 BW / 172 MCFD
 - 23,000 cumulative BO
 - Problems and Questions
 - This worked!
 - Liner maintained hole stability?
 - Liner hanger packer kept proppant fracture in zone?
 - Pressure drawdown kept proppant fracture in zone?
 - Good rock?

Dual lateral - OH or perforated liners – Lodgepole liner uncemented

CONSTRUCTION DIAGRAM LOGOSZ 44X-15

INDUSTRIAL COMMISSION
STATE OF NORTH DAKOTA

DATE 03-23-05CASE NO. 84//
Introduced By Herrows Tom
Exhibit G

Identified By Tim Lesinger

HEADINGTON Identified By Tim LEGHALE EXHIBIT 6

Non-confidential Drilling Results to Date

- Dual lateral OH or perforated liners Lodgepole liner uncemented
 - IP 51 BO / 171 BW / 44 MCFD
 - Proppant Fractured immediately to after 1 month
 - 134 BO / 179 BW / 125 MCFD
 - Current 32 BO / 37 BW / 72 MCFD
 - 11,000 cumulative BO
 - Breakeven at \$45/BO
 - Problems and Questions
 - This has not worked!
 - Liner maintains hole stability?
 - Proppant fracture growth into Lodgepole?
 - One well has water salinity and H₂S indicative of Mission Canyon
 - 2 wells have isolated the lateral the uncemented through the Lodgepole leg (what to do with spacing?)
 - Only the best rock and more pressure drawdown to keep prop fracture in zone?

CURRENT WELLBORE DIAGRAM

Non-confidential Drilling Results to Date

- Dual lateral OH or perforated liners Lodgepole liner uncemented
 - IP 463 BO / 12 BW / 512 MCFD
 - Not proppant fractured yet (planned to wait MECHANICAL)
 - Current 172 BO / 0 BW / 166 MCFD
 - 22,000 cumulative BO
 - Breakeven at \$18/BO
 - Problems and Questions
 - This worked (sort of)
 - Liners maintaining hole stability?
 - Complicated mechanically?
 - Good rock?
 - Pressure drawdown may keep proppant fracture in zone?
 - Mechanical problems may prevent proppant fracturing?

Single lateral - perforated liner – Lodgepole cemented

Non-confidential Drilling Results to Date

- Single lateral perforated liner Lodgepole cemented
 - IP 275 BO / 107 BW / 264 MCFD
 - Proppant Fractured immediately to after 3 months
 - 179 BO / 110 BW / 183 MCFD
 - Current 83 BO / 20 BW / 126 MCFD
 - 12,000 cumulative BO
 - Breakeven at \$25/BO
 - Problems and Questions
 - This has worked (fairly well)
 - Casing maintains hole and stops fracture growth into Lodgepole?
 - Mechanically simple?
 - Good rock?
 - More pressure drawdown to improve keep proppant fracture in zone?

Conclusions

- ND bottom hole temperature is higher
- ND is clastic versus carbonate
- ND bottom hole pressure is higher (.50-.58 psi/ft)
- Bakken shale open hole is not stable
- Rock properties (Julie)
 - Naturally fractured
 - Oil wet
 - Swelling and migrating clays

Planar and Co-planar Designs

- BTA, JMG, Black Rock
 - Long Single lateral 1280
- Murex
 - Coplanar 1280
- Headington, Ansbro, Burlington, Missouri Basin, Stephens
 - Coplanar 1280
- Continental
 - Coplanar 1280
- BR & Denali
 - Coplanar 640
- Nance, Amerada, EOG, Tri-C, Lyco, Hunt, Sam Gary, Headington, Stephens
 - Single lateral and coplanar 640

DATE 03-29-65 CASE NO. 6485 Introduced By 1374 On Browning Exhibit

Identified By Jim Kennis

CASE #8498 Exhibit 1

March 23, 2005

PRELIMINARY DIRECTIONAL DRILLING PLAN

STATE OF NORTH DAKGLA HEADINGTON DATE 325-05 CASE NO. 6469 EXHIBIT 7 Exhibit 7

Identified By Lecuses

Burlington Resources

BR Fed Angle 11-13H

McKenzie County, North Dakota

Case# 8439, Exhibit# 3.1

INDUSTRIAL COMMISSION
STATE OF NORTH DAKOTA

DATE OF STATE OF NORTH DAKOTA

DATE OF OF NORTH DAKOTA

DATE OF OF NORTH DAKOTA

Exhibit L-2

Idea (1924-3) Secure

Denail Oil of Gas
PROPOSED SPACING UNIT
Case # 85 87

Exhibit L2

June 23, 2005

ALTERNATIVE NO. 1

DUAL HORIZONTAL BAKKEN LATERAL

ALTERNATIVE NO. 2

SINGLE HORIZONTAL BAHKEN LATERAL

CASE NO. 8626 EXHIBIT NO. D

STATE OF NORTH DANGIA

PATE 04-20-05CASE NO. 8520

Exhibit D

Identified By Lacer Kenuse

Planar and Co-planar

- Long Single Planar Lateral \$2,900,000
 - Less mechanical risk
 - Simpler more effective re-frac
- Coplanar \$3,500,000 if nothing goes wrong
 - \$4,000,000+ and no proppant frac if liner or tool problems
 - Ability to re-frac?

- Can evaluate spacing unit for \$2,900,000 (8550' lateral \$340/ft)
 - Less mechanical risk and simpler more effective frac and re-frac
 - \$5,800,000 total development cost if 2nd well justified (17,100' of lateral)
 - Wells are just 500' closer than if drilled down quarter section lines
- Coplanar \$3,500,000 if nothing goes wrong
 - 9,600-13,000' lateral \$265-366/ft)
 - \$4,000,000+ and no proppant frac if liner or tool problems (\$303+/ft)
 - Ability to re-frac?
 - \$7,000,000 total development cost if 2nd well (20-21,500' of laterals \$327/ft)

The Basics Bakken Formation in North Dakota

- ****Upper & Lower Black Shale**
 - **World Class Source Rock**
 - **TOC's as high as 40%**
 - # HC Generation 200 to 400 BBbls of Oil
- **** Clastic Middle Member**
 - **5** Lithofacies
 - **Primarily Sandstones and Siltstones with Interbeds of Dolostone and Limestone**
 - Low Porosity & Permeability

Stratigraphy

Central Bakken Basin in North Dakota

South	Mississippian Lodgepole Formation North	
	Upper Shale Member	on .
	Transitional Facies – L5	an atic
	Lithofacies 4	Mississippia kken Forma
	Lithofacies 3 Central Basin	issippi Rorm
	Lithofacies 2 Facies	Missi Bakken
	Transitional Facies - L1	M akl
	Lower Shale Member	B
Devonian Three Forks		

Stratigraphy

Bakken Limit in North Dakota

Upper Shale Lithofacies 5

Lithofacies 4

Lithofacies 3

Lithofacies 2

Lithofacies 1

Lower Shale

Conoco, Inc. #17 Watterud "A"

Upper Shale

Lithofacies 5

Lithofacies 4

Lithofacies 3

Lithofacies 2

Lithofacies 1

Lower Shale

Meridian Oil, Inc. #44-27 MOI

Shell Oil Co. #32-4 Young Bear

Lithofacies of the Middle Member

(From LeFever and others, 1991)

Middle Member Bakken

Porosity Types

- **Clastic Sequence with Carbonate Interbeds**
- **Primary Porosity**
 - **** Interparticle to Intercrystalline**

Interparticle

Intercrystalline

Middle Member Bakken Porosity Types

- **Secondary Porosity**
 - **Dolomitization**
 - **Matrix**
 - **Cement**

- **Fractures**
 - **Regional**
 - **# HC Generation**

Intercrystalline

Fracture

Tectonic Fracturing

Salt Dissolution

Complete or Partial Dissolution of the Prairie Salt

- Depositional Edge
- OverlyingBasement Structures
- Other Geologic Features

Tectonic Fracturing Regional Fractures

Fractures HC Generation

Upper Bakken Shale

Lithofacies 4

Non-Tectonic Fractures

HC Generation - Upper Bakken Shale

Texaco, Inc - #1-5 Thompson

Implications Fractures

- Necessary for Production?
 - Natural
 - **Artificial**
 - **Enhances Existing** ϕ **and K and Fractures**
 - Production pathway for the Shales
- **Result in an Increase in Production**
 - ** Providing a Conduit for Oil to the Borehole resulting in High Production Rates

Implications

Fractures

- **Problems**
 - **Result in Borehole Stability Problems**
 - **# High Potential for Damage of Micro-fractures**
 - ****** Over-balanced muds
 - **Rapid Pressure Drawdown**
 - **Water-blocking (Bakken is "Oil-Wet")**
 - **** May Influence the direction of the Fracture- Stimulation Treatment**

Middle Member Bakken

Accessory Minerals

- **Pyrite**
 - Iron Oxides
 - **Response to Acid**
 - **Wireline Log Effects**
- **Clays**
 - # Illite, Chlorite & mixed-layer Clays
 - **Response to Acid**
 - **Response to Water**
- Organic Material
 - # TOC's > 0.5%
 - ***** Wireline Log Effects

Lithofacies of the Middle Member

(From LeFever and others, 1991)

Shell Oil Company - #12-6-44 U.S.A.

SENWNW Sec. 6-T.148N.-R.104W.

Conclusions

- **The Lithofacies are present basinwide.**
- ** Primary reservoir porosity may be enhanced by diagenesis, tectonic fractures, and/or fractures from HC generation.
- **Porosity enhancement is not restricted to a single lithofacies within the Middle Member.**
- **Type of fluid used while drilling may have adverse effects on production.**
- **The presence of vertical fractures in areas of intense HC generation may affect the outcome of stimulation treatment.**

Conclusions

- **Barnett Shale, Texas is a good analog to the Bakken**
 - Low Porosity/Low Permeability Source Rock
 - **Gelled-water vs. Slick-water Fracture Stimulation Treatment**
 - **Success with Multiple Fracture Treatments**