

The two inset maps illustrate the sensitivity of the TTI calculation to variations in the assumed heat flow. The inset to the left is calculated using a constant heat flow value of 48 mW/m^2 whereas the inset to the right is made with a heat flow value of 52 mW/m^2 Note that increasing the heat flow forces the onset of oil generation (TTI > 15) towards the east.

Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Reources

the units listed in Table 1 Eq. 1 Where n = Number of layers TTI Model Constants

Introduction

Stratigraphic Interval	Age of the Bottom (Ma)	Age of the Top (Ma)	Thermal Conductivity (w/M%)
Surface to Pierre	72	0	1.7 ²
Pierre to Mowry	100	72	1.2 ^{1,2}
Mowry to Inyan Kara	126	100	1.2 ^{1,2}
Inyan Kara to Swift	140	126	1.6 ^{1,2}
Swift to Spearfish	200	140	2.8 ^{1,2}
Spearfish to Madison	335	200	3.1 ^{1,2}
Madison to Base of the Last Salt	343	335	3.0 ¹
Base of the Last Salt to Bakken	363	343	3.5 ¹
Bakken to Three Forks	366	363	1.5 ¹

Haung, 1988

 $(W m^{-1} \circ K^{-1}).$

² Gosnold, 1984

Eq. 4 To illustrate this, consider the situation immediately flow in the Great Plains of the United States: Journal of following the deposition of the Bakken Formation. At this Geodynamics, v. 4, p. 247-264. TTI $_{n}(t_{n1} \text{ to } t_{n2}) = 10/q_{n} \{ 1/\ln(r) (r [(T_{n2}^{/10)-10.5}] - r [(T_{n2}^{/10)-10.5}] \}$ point in time, the top of the Bakken is at the surface and is presumably subjected to the same mean surface Huaung, Y., 1988, Thermal history model of the Where temperature (T₀) present today. Assuming that Williston Basin, unpublished thesis, University of North subsidence and sedimentation occurred at a more or less Dakota, Grand Forks, North Dakota, 117 pg. n = Number of stratigraphic intervals constant rate during deposition, the temperature at the base TTL = Time-Temperature Index for the interval of the Bakken could be estimated using Eq. 1 with i equal LeFever, J. A. 2008. GI 63 in progress. defined by t_{n1} , t_n and T_{n1} , T_{n2} . to 1, L_{i-1} , K_{i} , and Q being equal to the present day $q_n = (T_{n2} - T_{n1})/(t_{n2} - t_{n1})$ thickness, thermal conductivity and conductive heat flow Lopatin, N.V., 1971, Temperature and time as geologic = Starting age of interval n of the Bakken respectively. Maturation of organic matter factors in coalification: Academiia Nauk SSSR, Izvestiia = Ending age of interval n during deposition of the Bakken would then be given by Serri Geologiccheskalu, v. 3, p. 95-106. = Starting temperature ($^{\circ}$ C) of interval n the TTI_n from Eq. 4. The next step is to calculate the = Ending temperature (°C) of interval n Manz, L. A., 2007, Deep geothermal resources: estimated TTI_n for the Bakken following the deposition of the temperatures at the base of the Madison Group, North Madison. In this case the surface temperature is applied Dakota Geological Survey 100K Series, WIst – g – MM to the top of the Madison and the temperature at the base Because maturation is a cumulative process, the time of the Madison is found from Eq. 1 with i = 2 (the second temperature index (TTI) is found by summing the TTI unit), L_{i-2} being equal to the thickness of the Madison and Peters, K. E., 1986, Guidelines for evaluating petroleum calculated for each time interval as follows (Waples, K being equal to the thermal conductivity of the source rock using programmed pyrolysis: American 1980): Madison (Table 1). The conductive heat flow (Q) is Association of Petroleum Geologists, Bulletin 70, p. assumed to be constant. Using the temperature at the base 318-329. Eq. 5 of the Madison (top of Bakken we can find the Southern Methodist University Geothermal Laboratory temperature at the base of the Bakken, again with Eq. 1. ttp://www.smu.edu/geothermal/georesou/resource.htm The new upper and lower temperatures for the Bakken together with the interval of time represented by the Waples, D. W., 1980, Time and temperature in petroleum Madison Group are used in Eq. 4 to find the additional formation: application of Lopatin's method to petroleum Table 3 amount of maturation that occurred during Madison time. exploration: American Association of Petroleum Waples (1980) suggests that oil generation from organic The total amount of maturation in the Bakken is found by Geologists, v. 64, p 916-926. rich shales is limited to TTI values between 15 and 160. adding the maturation that occurred during Madison time This interval is frequently referred to as the "oil window" (TTI_{--}) to the maturation that occurred during Bakken Wood, D. A., 1988, Relationships between thermal time (TTI_{n-1}) . Repeating this process for the n intervals in maturity indices calculated using Arrhenius equation and the section produces a set of incremental TTI_n for the Lopatin method: implications for petroleum exploration, Bakken that covers its burial history. Once a TTI["] is found American Association of Petroleum Geologists, v. 72, p. for each interval, the total TTI of the Bakken is found by 115 – 134. summing all of the TTI_r's in the section (Eq. 5).

expressed as follows:

The Lopatin (1970) method that produces the Time -Temperature Index (TTI) is used here to evaluate the petroleum generation potential of the Missississippian/ Devonian aged Bakken Formation. The TTI is based on the realization that the chemical reactions that generate oil and gas are critically dependent upon the temperature history of a hydrocarbon generating source rock. Because temperatures increase with depth,

calculating the TTI requires a reconstruction of a source rock's burial history. Thus, in order to reconstruct the burial history of the Bakken, the overlying stratigraphic section must be subdivided into time equivalent and lithologically equivalent units. Time equivalence is needed in order to correctly reconstruct the burial history and lithologic equivalence is needed to correctly determine the temperature history. In this study the stratigraphic section overlying the Bakken is divided into Eq. 2

Calculating the TTI of any unit requires summing the calculated TTI for each time interval that makes up the Where burial history of the unit in question. In practice, this is done by calculating the incremental TTI_n of the source rock over the time interval specified by the addition of each stratigraphic unit that makes up the overlying section. With the addition of each stratigraphic interval (n), the temperature at the top (T_{n+1}) and the base (T_n) of the unit is estimated from the following expression (Gosnold, 1985):

$$T_n = T_o + Q \sum_{i=1}^{i=n} L_i / K_i$$

= Average surface temperature (°C) = Temperature at the base of the nth layer ($^{\circ}$ C). Q^{n} = Conductive heat flow (mW/m²). = Thickness of the ith layer (m)

K = Thermal conductivity of the ith layer

Table 1

i = Temperature (°C)/10 γ = Maturation rate factor or relative reaction rate.

Lopatin modified Eq. 2 so that γ would equal 1 in the temperature interval that spans 100° to 110° C. Incorporating this into Eq. 2 yields (Wood, 1988):

Lopatin's method for determining the maturation

index of source rocks is a simplified version of the

Arrhenius equation that states that chemical reaction rates

increase exponentially with increasing temperatures.

Lopatin simplified the Arrhenius equation by replacing the

thermodynamic variables within the Arrhenius equation

with a simple constant (r) that reflects the increase in

reaction rate that results from increasing temperature. In

10° C rise in temperature. Therefore, in order to estimate

the difference in reaction rate between two temperatures

one could set r equal to two and raise r to a power that

describes the number (i) of 10°C increments between the

two temperatures. Algebraically this relationship may be

 $\gamma = r'$

general, chemical reaction rates tend to double with every

Eq. 3

$$\gamma = r^{(T/10)-10.8}$$

It should be obvious that for a reaction that doubles with every 10° C increase in temperature (r=2) that after the temperature rises 30° C one could expect an eightfold (2^{3}) increase in maturation rate. Lopatin indexed the Isopach Maps temperature variable n so that n=0 over the temperature interval 100-110°C. These considerations are summarized in the following table (Modified from Waples, 1980).

Table 2

Temperature Interval (°C)	Temperature Index (n)	Maturation Rate Factor (γ)
90 - 100	-1	r ⁻¹
100 - 110	0	1
110 - 120	1	r ¹
[100 + (m * 10)] to [110 + (m * 10)]	m	r ^m

The maturation rate factor (γ) describes the instantaneous rate at which oil is generated. In order to evaluate the relative oil generation potential of a source rock, the maturation rate factor must be integrated over the time during which maturation occurs at the rate indexed by γ . Under the assumption of a constant rate of temperature change, Eq. 3 is integrated over time t_{n1} to t_{n2} to yield the (41°F) (Manz, 2007). corresponding incremental Time-Temperature Index (TTI_n). The TTI_n in this situation expresses the potential oil generation capacity of a source rock for the interval n under the given time-temperature limits. Recast as an integral that, when solved for constantly changing temperature from T_{n1} to T_{n2} over the time interval t_{n1} to t_{n2} , yields (Wood, 1988):

$$TTI = \sum_{n=1}^{n=max} TTI$$

Oil generation potentia	TTI
Immature	<15
Onset of oil generation	15
Peak oil generation	75
End oil generation	160
Upper limit for wet gas	1,500

Map Construction

The Time-Temperature Index map of the Bakken Formation is generated from a burial history defined by isopach maps that use the tops listed in Table 1. The advantage of using maps is that they: 1) allow for the inclusion of wells that do not penetrate the entire section through the Bakken or have an incomplete list of tops 2) allow for reducing the amount of data that needs manipulation and 3) allow for clustered data or spurious data points to be averaged. The maps used to build the TTI map in this study use North Dakota Industiral Commission's database that provides measured depths to several key horizons for over 14,000 wells in North Dakota. The process of producing the TTI map also involves the construction of a conductive heat flow map. Together, these maps, along with the ages of the various horizons used to define the isopach maps, reconstruct the temperature history of the Bakken Formation in North Dakota.

Conductive Heat Flow Map

The conductive heat flow (used to find Q in Eq. 1) within the Williston Basin was built from data reported by the Southern Methodist University Geothermal Lab (2008), Gosnold (1984) and Scattolini (1978). This map is assumed to represent the local variation in heat flow within the Williston Basin. However, use of this map in calculating the TTI of the Bakken Formation also implies that there has been no variation in heat flow through time. Temperature estimates of the Bakken are based on a constant 5°C (41°F) average surface temperature (Manz, 2007).

All of the maps are generated with the Petra ® program. Petra
R like most computer mapping routines, generates maps of well data by first setting up a regular grid of nodes. The value for each node is found from data found surrounding each node. In order to calculate the TTI for any given horizon, the various grids must be resampled so that the locations of the nodes for each isopach match.

TTI Map Calculation

A map of the TTI for the Bakken Formation was calculated for each node in the final grid using the isopach grids of the various stratigraphic intervals and the grid of heat flow values. The map assumes the present day thickness of each stratigraphic interval to be equivalent to the original thickness of the interval. Furthermore, the map assumes that the modern thermal conductivities of the units have remained constant through time and that average surface temperatures have been a constant a 5°C

References

Gosnold, W. D. Jr., 1984, Geothermal resource assessment for North Dakota. Final Report, U.S. Department of Energy Bulletin No 84-04-MMRRI-04

Gosnold, W.D. Jr., 1985, Heat flow and groundwater

Geologic Investigations No. 61